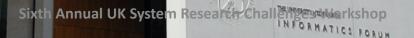


WePS: Enabling Low-latency Giant Model Replication in Geo-distributed Parameter Servers

Chijun Sima^{1*}, **Yao Fu^{2*}**, Man-Kit Sit², Feng Lin¹, Pierre-Louis Aublin³, Luo Mai²

Tencent¹, University of Edinburgh², IIJ Innovation Institute³

*Co-primary authors



Recommendation systems

Digital Content 2.7 Billion Monthly Active Users

E-Commerce 2 Billion Digital Shoppers

Social Media 3.8 Billion Active Users

Digital Advertising 4.65 Billion User Targeted

Characteristics of recommendation systems:

- Billions of global online users
- Latency-sensitive Service-Level-Objectives (e.g., latency of making new contents visible)

Geo-distributed parameter servers

Parameter Server (PS)

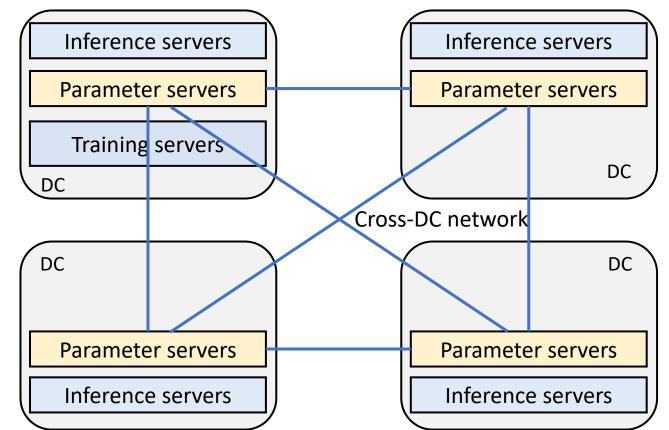
• Embedding table & neural networks

Model update (W = W + Ir*grad)

- Collect all data in a DC for best accuracy
- Training servers compute **gradients** which correct the parameters in PS

PS are **replicated** across Data Centres (DCs)

- Minimising model inference latency
- Cross-DC networks have limited bandwidth (e.g., 100 – 1000 Mbps [1])



[1] Gaia: geo-distributed machine learning approaching LAN speeds, NSDI 2017

Gigantic models and massive model updates

Gigantic models (> 1 TBs) are emerging in recommendation systems

- Embedding tables increased **100x** every year (production data)
- Neural networks increased **10x** every year [1]

Massive model updates (> 250 million/second) are in needs

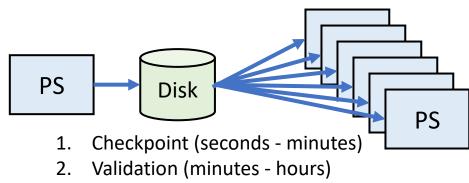
- Many new users, e.g., GDPR leads to massive anonymous users
- Massive new contents, e.g., TikTok, YouTube

[1] https://openai.com/blog/ai-and-compute/

Problems of existing PS systems

PS [1] and BytePS [2] – Checkpoint broadcast

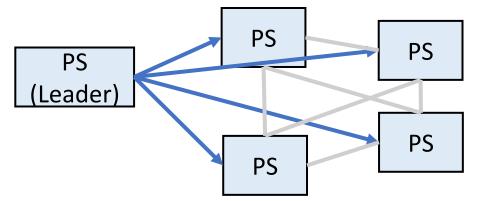
Multiple long-latency model update steps



3. Broadcast (seconds – minutes)

Adam [3] – In-memory replication

- Leader bottleneck
- Under-utilise network paths
- Eventual consistency hurts SLOs

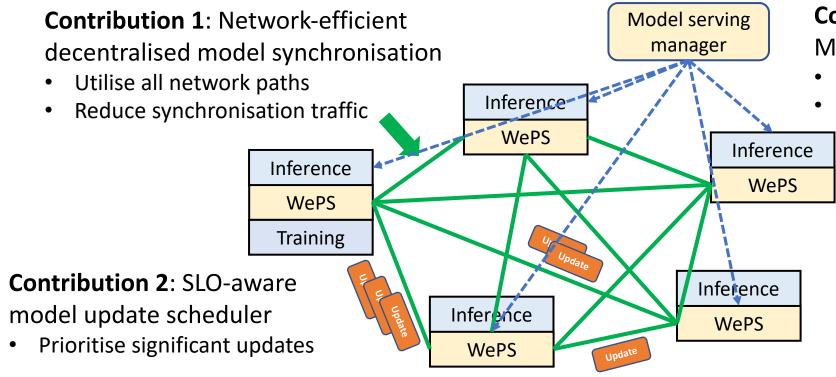


Our goal: Supporting high-throughput, low-latency parameter update for gigantic model replicas

- [2] A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters, OSDI 2020
- [3] Project Adam: building an efficient and scalable deep learning training system, OSDI 2014

^[1] Scaling distributed machine learning with the parameter server, OSDI 2014

WePS overview



Contribution 3:

Model serving manager

- Evaluate & recall model online
- Recover failure online

How to reduce synchronisation latency?

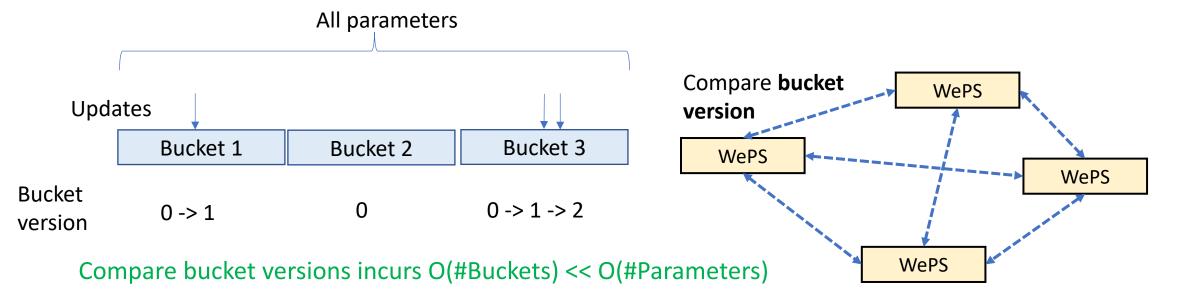
Observation: Only a small portion of "hot" parameters are touched (<1% per minute)

Idea: Enabling PS to compare parameters and only synchronise updated parameters

Challenge: Compare parameters all parameters is very expensive -- O(#Parameters)

Benefits

- Use all network paths
- Reduce network traffic



Can we further reduce synchronisation latency?

Problem: Find updated parameters in a bucket is expensive (up to 1M parameters per bucket)

Idea: Cache which parameters have been updated

U	odates	$\downarrow \downarrow$	
	Update cache	Update cache	Update cache
	Bucket 1	Bucket 2	Bucket 3

Cache result after 2 updates

Parameter Name	Parameter Weight	Timestamp
DenseLayer09	[0.6, 0.9, 9.6, 0.3]	1
Embedding01	[0.1, 0.7]	4

Cache size is usually 100 – 1000 (<< 1M)

Details in incoming report

- Cache retirement policy
- Cache update policy

How to handle big model updates?

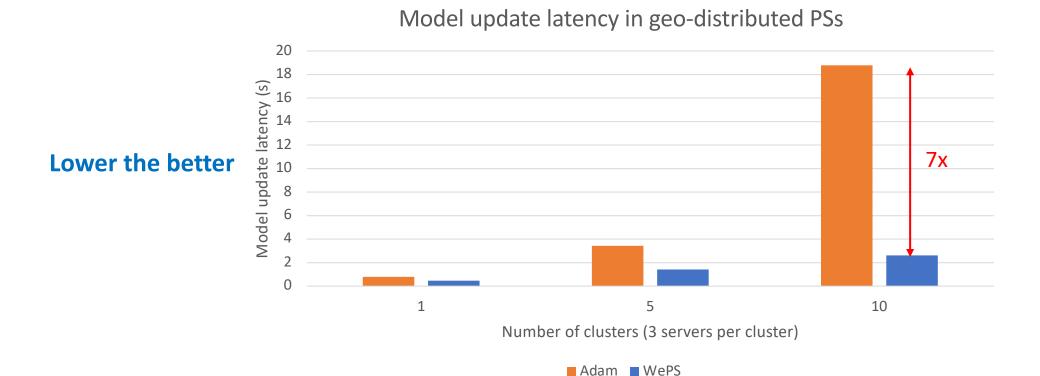
Problem: Big model updates (e.g., GBs) take long time to complete and affect model serving result

Idea: Prioritise significant parameter update (Why? Only significant update largely change model serving result).

Significance += $\sum_{i=1}^{l} |gradient[i]|$

	Parameter Name	Parameter Weight	Timestamp	Significance	
Requester	Transformer01	[0.6, 0.9,, 0.3]	1	3.6	
•	Transformer02	[0.1, 0.7,, 0.1]	4	6.2	
				— Diff	erence = 4.9
	Parameter Name	Parameter Weight	Timestamp	Significance	
Responder	Transformer01	[0.4, 0.1,, 0.5]	5	8.5	Details in incoming report
Responder		Ŭ	_		Details in incoming reportMulti-hop synchronisationMulti-model coordination

Test-bed Experiments



30 servers (10 clusters), 5 TB model, Production model update workload

Large-scale Production Deployment

Improve the synchronisation latency by up to **100x**.

# replicas	# machines	# models	Size of parameters	Model update per second	Avg. latency (inter-DC)	Avg. latency (intra-DC)
6	1986	100	18 TB	250 M/s	4.5 s	2.1 s

10 minutes

System availability:

- Model inference > 99.999%
- Model update > 99.9999%

Latency of existing PS systems [1, 2]:

^[1] Scaling distributed machine learning with the parameter server, OSDI 2014

^[2] A unified architecture for accelerating distributed DNN training in heterogeneous GPU/CPU clusters, OSDI 2020

Summary

- Geo-distributed recommendation systems must support gigantic models and massive model updates
- WePS: A system for supporting low-latency updates towards geo-distributed gigantic models
 - Network-efficient decentralised model synchronisation
 - SLO-aware model update scheduler
 - Online model serving manager
- Many future directions
 - Support emerging storage hardware (e.g., persistent memory)
 - Support multi-modalities deep learning models (e.g., MoE)

Thank You — Any Questions?

Yao Fu Y.Fu@ed.ac.uk